Graphs having distance-n domination number half their order

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphs with convex domination number close to their order

For a connected graph G = (V,E), a set D ⊆ V (G) is a dominating set of G if every vertex in V (G)−D has at least one neighbour in D. The distance dG(u, v) between two vertices u and v is the length of a shortest (u− v) path in G. An (u− v) path of length dG(u, v) is called an (u− v)-geodesic. A set X ⊆ V (G) is convex in G if vertices from all (a − b)-geodesics belong to X for any two vertices...

متن کامل

A characterization of even order trees with domination number half their order minus one

We consider finite graphs G with vertex set V (G). A subset D ⊆ V (G) is a dominating set of the graph G, if every vertex v ∈ V (G) − D is adjacent to at least one vertex in D. The domination number γ(G) is the minimum cardinality among the dominating sets of G. In this note, we characterize the trees T with an even number of vertices such that γ(T ) = |V (T )| − 2

متن کامل

Domination and Signed Domination Number of Cayley Graphs

In this paper, we investigate domination number as well as signed domination numbers of Cay(G : S) for all cyclic group G of order n, where n in {p^m; pq} and S = { a^i : i in B(1; n)}. We also introduce some families of connected regular graphs gamma such that gamma_S(Gamma) in {2,3,4,5 }.

متن کامل

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

Total Roman domination subdivision number in graphs

A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2002

ISSN: 0166-218X

DOI: 10.1016/s0166-218x(01)00284-0